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AN ALGORITHM FOR RESCALING A MATRIX POSITIVE DEFINITE

Hui Hu

Abstract
For a given square real matrix M, we present a general algorithm
which decides the existence of a positive diagonal matrix D such that
DM 1is positive definite and which constructs the D 1if it exists. Tt
is shown that solving this matrix rescaling problem is equivalent to
finding a solution of an infinite system of linear inequalities. The
algorithm solves the infinite system of linear inequalities by

generating and solving a sequence of linear programs.

1. Introduction

Given a square real matrix M, does there exist a positive diagonal
matrix D such that DM 1is positive definite? 1If such a D exists,
how can it be constructed? Such questions arise in mathematical
economics and in the study of certain engineering systems {1]. A
necessary and sufficient condition for the existence of such D for
3 » 3 matrices was given by Cross [4]. The existence of such D for

———ce
Leontief matrices was proved by Tartar (12] and Dantzig (5]. A general }
necessary and sufficient condition for the existence of such D was 0

]

given by Barker, Berman and Plemmons [1). However, the condition is

difficult to verify in practice. Methods for constructing such D for
some special classes of matrices were discussed in [1] and {2].
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In this paper we present a general algorithm which decides the
existence of such D and which constructs such a D 1if it exists. 1In
Section 2 we explain notation and preliminaries. In Section 3 we
specify the algorithm, prove its correctness and convergence, and
discuss conditions that guarantee termination in a finite number of
steps. Computational results are presented in Section 4. Finally, we

discuss possible ways to accelerate the convergence in Section 5.

2. Notation and Preliminaries

An n x n real matrix M, not necessarily symmetric, is positive

definite 1f xMx > 0 for all 0 # x € R".

If there exists a positive diagonal matrix D such that DM is
positive definite, we say that M can be rescaled positive definite.
Such matrices are called "diagonally stable” in [1] and
“"Volterra-Lyapunov stable” in [4].

Superscripts on vectors are used to denote different vectors, while
subscripts are used to denote different components of a vector.

Let s"! « (x e R": x'x = 1} denote the unit sphere in R" and

s:'l = {x € g1

P x> 0} denote the set of nonnegative vectors in Sn—1

D(x) 1is a diagonal matrix with diagonal elements xi for

For a real symmetric matrix B, let A[B] stand for the smallest
eigenvalue of B and V[B] a corresponding eigenvector of unit length.

Given a mathematical programming problem (P), v(P) denotes the

optimal objective function value of (P).

Let ei be the i-th unit vector of Rn and e = el + e 4 en.
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&
conv(S) denotes the convex hull of S. !
.
Ix! denotes the Euclidean norm of x. b
Fact 1. M 1is positive definite if and only if M + M s 3
kY
positive definite. f
Fact 2. M 1is positive definite if and only if xTMx > 0 for all '~
X € Sn_l, where s*1 - {x € R™: x'x = 1}. T
Fact 3. All principal minors of M remain sign invariant under a ;
positive rescaling DM. a
- Fact 4. If M {is positive definite, then all its principal minors .
3
i are positive (see, e.g., Cottle [3]). i‘
E Fact 5. If M 1is positive definite, then BTMB is positive :
i definite for any real nonsingular matrix B. :
3 Fact 6. For any real symmetric matrix B, E‘
é AB] = min {u'Bu: ue %1} (see, e.g., Wilkinson [13], p. 98-99). ¢
. Fact 7. For any real symmetric matrix B, A[B] 1is a continuous By
y function of the elements of B (see, e.g., Isaacson and Keller [9], S
p. 136). N
E Remark 1. ?
. “.'
. (1) Let DM (MD) be a positive rescaling of the rows (columns) of f
the matrix M. M can be column—-rescaled positive definite if and only ‘;
o
if M can be row-rescaled positive definite. Indeed, if DM is :ﬂ
: positive definite, where D 1is a positive diagonal matrix, then Sf
(D-'l)TDMD-l = MD_l is also positive definite (Fact 5) and vice versa. i~
N (2) We are only interested in rescaling nonsymmetric matrices Z
< because if a real symmetric matrix is not positive definite, then it can i
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not be rescaled positive definite. For given a real symmetric matrix

M, if all its principal minors are positive, then M 1s positive
definite. Otherwise, at least one of the principal minors of M 1is not
positive. Therefore, DM has at least one nonpositive principal minor
for any positive diagonal matrix D (Fact 3) and DM 1is not positive
definite (Fact 4).

(3) 1f M can be rescaled positive definite, then it is easy to
see that M 1is nonsingular and the diagonal elements of M are
positive (by Fact 4, dim11 > 0 for all 1, which implies m, > 0 for
all 1i). Therefore, without loss of generality we assume that the
matrix M to be rescaled is nonsingular and has only positive diagonal

elements,

3. The Algorithm and its Convergence
First we show that solving the matrix rescaling problem 1is
equivalent to finding a solution of an infinite system of linear

inequalities.

Theorem 1. Suppose that all diagonal elements of matrix M = (mij) are
positive. Then M can be rescaled positive definite if and only if the

following infinite system of linear inequalities

(ISLD): (D(u)Mu) Tx > 1 for all u ¢ ™!

has a solution. Moreover, for any X solving (ISL1), D(X) rescales

M positive definite.

r




".'n ."J a8

Proof. 1If there exists a positive diagonal matrix D(d) such that

D(d)M 1is positive definite, let f(u) = uTD(d)Mu. f(u) is a continuous

function of u and Sn—l is a compact set. Hence, f(u) achieves its

infimum on Sn—l, i.e., there exists u € Sn-1 such that f(u) > f(u) > 0

for all wu e sn—l. Let x, = di/f(ﬁ) for 1 =1, ..., n, we have

i
T- T - - n—-1
(D(u)Mu) 'x = u' D(d)Mu/f(u) = f(u)/f(u) > 1 for all u e § . Thus,
(ISLI) has a solution. On the other hand, if X 1is a solution of
T - T- n-1
(ISLI), then we have u D(x)Mu = (D(u)Mu) x > 1 > 0 for all u € § .
By Fact 2, D(X)M 1is positive definite. To complete the proof, we

only need to show that ii >0 for all i =1, .c. , n. Indeed,

n-1
;

(ei)TD(i)Mei = miiii >0 for all i =1, «v. , n since ei €S

also, all m are positive by assumption. Consequently, all ii

ii

are positive. U

Theorem 1 tells us that M can be rescaled positive definite if
and only if (ISLI) has a solution; and moreover, for any X solving
(1sLI), D(x) rescales M positive definite. The algorithm we are
going to present is actually to decide whether (ISLI) has a solution
or not and to find such a solution if it exists.

It is well known that deciding whether a finite system of linear
inequalities has a solution is equivalent to solving a linear program
(see, e.g., Dantzig [6], Chapter 5). 1In an analogous way, to solve the
infinite system of linear inequalities (ISLI), we solve (DILP)--the
dual of the infinite linear program (ILP) (see, e.g., Duffin, Jeroslow

and Karlovitz {8]).
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minimize x, + x, + *°** + x
1 2 n

subject to

n-1

(D(u)Mu)Tx > 1 for all ue§S

maximize X Yy
ieA

subject to

) D(ul)Muiyi =
ieA

y. 20 for all i€ A

i

A is finite and {ui: ie A} c Sn“l

This column generating algorithm is the analogue of a cutting plane
algorithm applied to (ILP). It generates and solves a sequence of
linear programs (LP(k)) for k 1, 2, ... . If v(LP(k)) tends to
infinity, then M can not be rescaled positive definite (Theorem 3).
Otherwise, a positive vector X which rescales M positive definite
will be found after finitely many iterations (Theorem 2).

We assume that the input matrix M is nonsingular and has only

positive diagonal elements (Remark 1).

Algorithm.
Step 1.
Let

let (LP(k)) be the following linear program:




Step
Step
-
p -
ii
= Step
-
.
2 Step

.
[N

P
PR |

n
maximize Z Yy
i=1

subject to
n
) D(ei)Meiyi = e
1=1
Yy >0 for 1 =1, ¢ee, n

6

let € <1 be a small positive number (e.g., € = 10 7).

2.
Let xk be an optimal dual solution of (LP(k));
find a A% satisfying |AS = A[DGEOM + MID(X) ]| < (1/2)€;

if Kk > (1/2)e, go to Step 4.

3.
Find a vector uk+1 € Sn_1 such that
+ +
1! - v + MO < e and  (WTH oMK ¢ e

1

+ +
form (LP(k+1)) by adjoining the column, D(uk 1)Muk , to the

constraint matrix of (LP(k)) with cost coefficient 1;

solve (LP(k+1));
if v(LP(k+1)) = =, then go to Step 5;

else k: = k + 1, go to Step 2.

4.

D(xk)M is positive definite, stop.

5.

M can not be rescaled positive definite, stop.

Sy
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3 Comments on the algorithm.
2, (1) Since we assume m >0 for all {1 =1, ... , n, (LP(O)) |is :
$ feasible., Therefore, (LP(k)) 1is feasible for all k. t
‘E (2) Efficient algorithms for calculating eigenvalues and S
v eigenvectors of a matrix are discussed in Wilkinson [13]. ;
(3) A symmetric matrix B 1is positive definite if and only if

A[B] > 0; in general this is not true for nonsymmetric matrices. .
{z Therefore, we calculate the smallest eigenvalue of the symmetric matrix ]
v D(xk)M + MTD(xk) in order to know whether D(xk)M is positive definite 1
; (Fact 1). E
;E (4) 1f the algorithm does not stop at an iteration k, then it 1
o generates uk+1 satisfying (D(uk+l)Muk+1)Txk < € <1l. While
? (D(ui)Mui)Txk.Z 1 for all { =90,1, ... , k since xk is an optimal
5 dual solution of LP(k). Therefore, no column D(uk)Muk can be brought
| in more than once. :
” :
;: Next, we prove the correctness and convergence of the algorithm and :2
% discuss conditions that guarantee termination in a finite number of
'; iterations.

Theorem 2. 1f there exists a positive diagonal matrix D such that DM

is positive definite, then the algorithm can find such a D after =

finitely many iterations.
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Proof. If M can be rescaled positive definite, then the corresponding

program (ILP) 1is feasible by Theorem 1. Let x be a feasible solution

of (ILP). Then, for all feasible solutions of (DILP), we have:

Iy, <1y, = o'z,

ieA iea

Namely, the objective function of

T

(DILP) 1is bounded from above by

e Xx. The algorithm generates a sequence of linear programs (LP(k)),

k=0, 1, «o. « Each (LP(k)) 1is feasible and is the restriction of

(DILP) to certain columns. Hence,
is also bounded from above by e'%.
programming, we can find an optimal

which satisfies

-1
1) L%

T k

0 < (m < ex S_eTi

-

T-

Let T=4{x¢R": 0 S_xi < ex for

F(x,u) = (D(u)Mu)Tx. Then F(x,u)

i.e., for any 6 > 0, there exists

(a) M(x,u) - (x,u)l < n implies

(x,u) and (x,u) in T x s"”

In particular, for 6 =1 - ¢ > 0,

holds. 1If the algorithm goes on infinitely, then it generates uk €S

for k=0, 1, «.. +» Because s"
i

3

exists u and u

the objective function of (LP(k))
By the duality theory of linear

dual solution xk of (LP(k))

for all i =1, ... , n.

all i=1, ... , n} and
is uniformlx continuous on T x § ,

n > 0 such that

IF(x,u) - F(x,u)| < & for all

there exists 1 > 0 such that (a)

n-1

is compact, for the 7 > 0, there

j

i -
in the sequence satisfying lu - u I { n.

L™ i ol

r-




Without loss of generality, we assume that

algorithm does not stop at iteration j-1, we have:

() Fed ol = o THIT > 1

(&) Fed7h Wy = (o medy T3 <

However, (b) and (c) imply that |F(xj-1

while "(xj-l,ui) - (xJ—l,uj)n < N, which contradicts the uniform

continuity of F(x,u) on T x Sn-l.

be finite in the case M can he rescaled positive definite. O

Remark 2. We have proved the finiteness of the algorithm under the

Ee

:ui) -

i <3,

Because the

,uj)l >1-€=5

It follows that the algorithm must

assumption that M can be rescaled positive definite.

boundedness of v(LP(k)) = eTxk for

assumption we need for the proof. Since the feasible region of (LP(k))

=1, 2,

is the onlx

can be considered as a subset of the feasible region of

have v(LP(k+1)) > v(LP(k)) for all k.
not be rescaled positive definite, the algorithm generates a sequence of
feasible solutions of (DILP) whose objective function values tend f

increasingly to infinity. Hence, the following theorem is established.

Therefore, in the case M can

Theorem 3. The following are equivalent:

(1) M can not be rescaled positive definite;

(2) v(DILP) = =;

(3) v(LP(k)) tends to infinity as k + =, [J

103

. " .
@,

nt e et

. - . -.'> ..'-. ~ - : N
AP T P W B DUV LA LOGY UL LU VORI U PP T

PO

In fact, the

(LP(k+1)), we

i Yt o St i el Ul S Sl A A g dib A A Sl SE AL A

1’1'1';;.,

’

P
2

SRHHA |

]

P

e e
[

PR

' "m
Ll

E—

T -
R | I

s

a o " --'-"'A'A

e

Bl DN

PR S S G O S RSN A




“

) We have seen that the algorithm is finite in the case M can be E:
rescaled positive definite. Next, we give a condition which ensures the :i
. finiteness of the algorithm in the case M can not be rescaled positive f:'
f definite, i.e., there exists j such that v(LP(j)) = =. EE
; %
N Condition 1. For every nonnegative and nonzero diagonal matrix D, T
there exists u ¢ S“'-l such that uTDMu < 0. Equivalently, there does é-

not exist nonnegative and nonzero diagonal matrix D such that DM is 5

positive semidefinite. o

Theorem 4. If M satisfies Condition 1, then the algorithm stops after i;

finitely many iterations. ry

Proof. Define G(x) = mi:;gife uTD(x)Mu = A (D(x)M + MTD(X))/Z] (Fact 6). f?
3 It follows from Fact 7 that G(x) 1is a continuous function of x. o
: Since M satisfies Condition 1, we have G(x) < 0 for all x ¢ S:-l, gi
Y where S:—l ={xes™x > 0}. Therefore, :;

T
B maxigife G(x) ma:tgife mitigife u D(x)Mu < 0.

we Q N
yes XES uss

+
Let F(x,u) = (D(u)Mu)Tx = uTD(x)Mu. For 8 = —-(1/2)B > 0, there exists

n > 0 such that

(d) M(x,u) - (x,u)? < n implies |F(x,u) - F(x,u)] < & for all

(x,u) and (x,u) in S:-l x Sn—l.

11
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As indicated in the proof of Theorem 2, if the algorithm goes on

infinitely, it generates ui and uj (i < j) satisfying Iui - W <n

i

and F(xj-l,u ) > 1. Thus,

@ FGSTImd ™l > dTh s o,

Let w = vIpGd "Hm + MDGI ™D = vimGd T 3 T om + G Ty 2

and assume that e < n, where the € 1s specified in Step 1l of the

algorithm. Then, 1 - Wl <e < n (Step 3) and hence we have

PG d ™oy - rd ™ d ™M W) <8 = =(1/2)8 by the uniform
n-1 n-1

continuity of F(x,u) on S, xS "« Thus,

(5)  FGIThdTh W)

< =(1/2)8 + v axd e ymw

+

= =(1/2)8 + (/2)wF G o + M3 T d e
- ~(1/2)8

+

MG T + ipd " exd "y /2

= -(1/2)B ced ™ d ™

+

[P

-(1/2)8
(1/2)B.

+
Re )

"

However, (e) and (f) imply that

FOI™ 0™ uly = A7 0™, udy ) > —(1/2)8 = 5 wnile

H(xj-l/nxj-lﬂ,ui) - (xj-lllxj-lﬂ,uj)l = lui - ujl <n,

which contradicts the uniform continuity of F(x,u) on S:-l X Sn-l

Therefore, if M satisfies Condition 1, then the algorithm terminates

after finitely many iterations (assume that € < n ). O

e s e T A L T e et e e e e e N e e
L e e -_“I 'a.h‘..-.'..'_- sy 'l.ﬁ' W I TG AR W R RN Py L”L‘L‘.‘. PRV PR RV YLy




In the rest of this section, we discuss other necessary and
sufficient conditions for M to be rescaled positive definite and
equivalent statements of Condition 1. First, we state a theorem that we

are going to use in the following discussion.

Alternative Theorem. Let T be a set (T may be infinite), hi(t) for

i=1, «e¢ , n be real-valued functions on T, and

P = {(hl(t), .ee ,hn(t)): t € T}« If P 1is closed, then

(1) the system (hl(t)’ coe ,hn(t))Tx >0 for all t € T has a
solution 1f and only if the origin is not contained in conv(P),
the convex hull of P;

(2) the system (hl(t), cee ,hn(t))T; >0 forall t €T has a
non-trivial (i.e., nonzero) solution if and only if the origin is

not contained in the interior of conv(P) (Dines and McCoy [7]). U

Lemma 1. M can not be rescaled positive definite if and only if

n—l}

{x: (D(u)Mu)Tx >0 for all u € § = ¢.

Proof. lLet T = {x: (D(u)Mu)Tx >0 for all u ¢ Sn-l}.

If T = ¢,
then (ISLI) has no solution. By Theorem 1, M can not be rescaled
positive definite. On the other hand, if T £ ¢, let X € T. Then,
T = T- n—-1 -

u D(x)Mu = (D(u)Mu) x > 0 for all u € S . Hence, D(x)M is
positive definite and x 1s a positive vector (assume that all

diagonal elements of M are positive). {l

13 -
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\!
> Lemma 2. M can not be rescaled positive definite if and only if the

2 origin is contained in conv(D(u)Mu: u € Sn-l).

Proof. It is easy to show that {D(u)Mu: u € Sn-l} is closed. The

LSO
", P}

lemma then follows easily from the Alternative Theorem and Lemma 1.

.
-
o

Condition 2. 0 ¢ int{conv(D{(u)Mu: u € Sn_l)}

&G A

Lemma 3. Condition 1 and Condition 2 are equivalent.

Proof. Although Conditions 1 and 2 look different, they are in fact
equivalent. 1Indeed, if M satisfies Condition 2, then the system
uTD(x)Mu = (D(u)Mu)Tx >0 for all u e Sn-1 has no non—-trivial
solutions (by the Alternative Theorem). This implies for any

0 #d > 0, there exists u ¢ Sn-1 such that uTD(d)Mu <0, {.es, M
satisfies Condition 1. On the other hand, if M does not satisfy

E: Condition 2, then (by the Alternative Theorem) there exists x # 0

. such that uTD(i)Mu = (D(u)Mu)Ti >0 for all u e Sn—l. In particular,
(ei)TD()_c)Mei = iimii >0 for all £ =1, ... , n. This implies

{: ;i >0 for all 1 =1, +.. , n (assume that all diagonal elements of 5

M are positive), Hence, M does not satisfy Condition 1. (]

14
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Remark 3. Notice that G(x) = miniglfe uTD(x)Mu is a continuous
xe$S

function of x, it is not hard to show the following.
(1) M can be rescaled positive definite if and only if

maximlfe minimife uTD(x)Mu > 0.
xe S| ues”

(2) Condition 1 or 2 is equivalent to
Condition 3. maximize minimize uTD(x)Mu < 0.
X€E Srl ue s
+
We summarize all nescssary and sufficient conditions for M to be

rescaled positive definite in Theorem 5.

Theorem 5. Suppose that all diagonal elements of M are positive.
Then the following are equivalent:
(1) M can be rescaled positive definite;

n-1

(2) (ISLI): (D(u)Mu)Tx‘Z 1 for all ue S has a solution;

3) (D(u)Mu)Tx >0 for all ue g1 has a solution;

n-l).

’

(4) the origin is not contained in conv(D(u)Mu: u € §

(5) maximife minimife uTD(x)Mu > 0.0
xeSE ueSn

Summary. The algorithm solves the matrix rescaling problem correctly
and completely. It is finite if M can be rescaled positive definite
or M satisfies Condition 1 (or 2, 3). It is possibly infinite only if
M can not be rescaled positive definite but still can be rescaled
positive semidefinite (i.e., there exists O #d > 0 such that D(d)M

is positive semidefinite).



4. Example and Computational Results

Example:
1 -1 0
M= 1 1 -17
4 0 1

We use revised simplex method to solve (LP(k)) and follow the

notation in Dantzig [6]. For convenience, we do not normalize uk. We

’ use B to denote the optimal basis of LP(k) and Ek+l the relative
ﬂ cost factor of the entering column for LP(k+1l).
.-
é Tableau of (LP(0)) (k = 0)
Basis inverse Yy y2 y3 r.h.s,
1 0 0 1 0 0 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0
Basis inverse Y y2 Y3 r.h.s.

1 0 0 1 0 0 1

£ i e Tl Sl Bl AR S AN S P S A R K R e B e A

A T S
»
[

¢
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(3
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I, »

W Ny Y



T

B_ID(ul)Mu1 = (0 -16 1)

El 1 - xOD(ul)Mu1 = 16

Tableau of (LP(1)) (k = 1)

T Ty

Basis inverse

Basis inverse

0 0

O ". ’.. ") .'.h
POASCEA SO




v ” adet ag\ e aes s ieare ety R )
= 1T
w=(-1 1 DT
3 Ip(u®ma? = (2 -65 -3)T
g, = 1 - xloudym’ = 67
Tableau of (LP(2)) (k = 2)
Basis inverse Yy y2 y3 ya y5 r.he.s.
1 0 0 1 0 0 0 2 1
0 1 16 0 1 16 0 -65 17
0 0 1 0 0 1 1 -3 1
-1 -1 -17 0 0 -16 0 67 -19
. . . *
B Basis inverse Y1 Yo Y, Y, Ys r.hes.
0.5 0 0 0.5 O 0 0 1 0.5
32.5 1 16 32.5 1 16 0 0 49.5
1.5 0 1 1.5 0 1 1 0 2.5
-34.5 -1 -17 33.5 0 ~-16 0 0 =52.5
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2
X

3

(34.5 1 17)T

(-1 -4 0)T

u
B ncud )M = (-1.5 =77.5 -4.5)T

53 =1 - x2D(u3)Mu3 = 84,5

Since B—ID(u3)Mu3 <0 and 53 > 0, we know that v(LP(3)) = =,

Therefore, M can not be rescaled positive definite.

Remark 5. It follows easily from Facts 3 and 4 that if M can be
rescaled positive definite, then M is a P-matrix (i.e., all principal
mincrs of M are positive). The above 3 x 3 matrix is a P-matrix but

it can not be rescaled positive definite.

Computational Results.

We have coded the algorithm in FORTRAN. We use the subroutine
MINOS (from the Systems Optimization Laboratory, Department of
Operations Research, Stanford University) to solve (LP(k)) and the
subroutine FO2ABF (from NAG Library, Stanford University) to calculate
eigenvalues and eigenvectors. The data were randomly generated and the
program was executed on a DEC 20 computer with the following results,

see Table 1.
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; Table 1 .
- .
¥ .
Problem number of CPU time
. dimension iterations (second) ~
- .
- 3% 3 5 3.15 .
’ :
v 5x%5 14 7.18 5
4 6 % 6 9 4.69
: 8 x 8 9 6426
. 16 x 16 8 6.23
3 5. Accelerating the Convergence
'- This column generating algorithm is the analogue of a cutting e
plane algorithm applied to (ILP). It solves the infinite linear g
program (DILP) by generating and solving a sequence of linear programs 5
(LP(k)), k=0, 1, +o. o« If the algorithm does not stop at iteration Kk, -
+ + -]
then a new column D(uk 1)Muk 1 is generated and brought in. This is a

.,.x.’.'l

k+1

+
cut, (0(u¥ Hm*HT

)'x > 1, on (ILP). If we want to accelerate the

* ]

convergence of the algorithm, we have to find ways to generate more
efficient cuts.
Let's look at the problem geometrically. Suppose the algorithm

does not stop at iteration k. Let fk(u) = uTD(xk)Mu. Then, -

+
fk(ui) >0, {=1, . , k and fk(uk 1) < 0. Since fk(u) is a

i
continuous function, for each uw, i =1, ... , k, there exists a

relatively open neighborhood Nk(ui) < Sn-l such that fk(U) >0 for

k+ k
u 1) < 0 means that U Nk(ui) does not

i
all u € Nk(u ). f ( i=1

k
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cover S" l. Suppose M can be rescaled positive definite and the

algorithm stops at iteration k. That means U§=1 Nk(ui) covers S" .

Therefore, we want to make Nk(ui) bigger so that we need fewer Nk(ul)

+ +
uk l)Muk 1. T

-1
to cover S" '. Let's consider the cut (D( )'x > a for some

a > 1, and hope that it will give a bigger Nk+l(u1)' However, since we

are solving linear programs, changing all the cost coefficients to «

+
will result in a solution axk ! and therefore has no influence on

+
choosing uk 2. If we go over the proofs of Theorems | and 2, we find

that if we change (D(uk)Muk)Tx 21 to (D(uk)Muk)Tx 2 a, where

0 <8 S_ak { L for all k, then Theorems ! and 2 still hold. Since

k+1 k+1 k+1
u

£ ( (D(xIM + MID(x®) Ju

LT = /2y

/DA D + M ()],

if f (uk+1

K ) < 0, a natural way to choose «a is:

k+1

_ k+l, _ k T , k
%yl = efk(u ) = GKI[D(X M+ M D(x )],

+
where O is a positive constant (if -ka(uk l) < &8, just let

%4 =8

A number of randomly generated problems were computed using the

above idea (P = 2) and compared with o« = 1, see Table 2.
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Table 2

problem no. of iterations no. of itera&i?ns
dimension (x, =1 for all k) (a, = =2f (u ))
k k k

5x5 14 2

6 X 6 9 8

8 x 8 9 2

16 x 16 8 3
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